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Least-Squares 101
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Top 3 reasons people

want to do least squares: don’t want to do least squares:
© Using C° nodal elements ® Conservation
© Avoiding inf-sup conditions ® Conservation
© Solving SPD systems ® Conservation

We will show that

» Using nodal elements is not necessarily the best choice in LSFEM, and so it is
arguably the least-important advantage attributed to least-squares methods

» By using other elements least-squares acquire additional conservation properties
» Surprisingly, this kind of least-squares turns out to be related to mixed methods
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The Stokes system

First-order velocity-vorticity-pressure (VVP) Stokes equations

(Vxw+Vp=f in Q
T3 Vxu-w=0 in Q
V-u=0 in Q

fpdx _o RQCR® — bounded contractible domain
Q 0€2 — Lipschitz continuous

Normal velocity-tangential vorticity condition

n-u=0 and nxw=0 on JQ

Function spaces and norms

Hy(Q) ={u€ L'(QIVuEL(Q); u=0 onT}
HO(Q,curl)={uEL2(9)|quEL2(9); nxu=0 on r}
HO(Q,div)={uEL2(Q)IV-uE [2(Q); n-u=0 on r}

H(Q,curl) N H,(€,div);

H,(Q,curl) N H(C,div) —

Stay tuned for LSFEM with velocity BC

D

CD

Exact sequence property: implied by domain assumptions

\% Vx V-
R H(Q)— H,(Q,curl)— H,(Q,div)—L; (Q) =0
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A well-posed LSFEM is a slam dunk

Stability of the VVP system
ol + ol + 12y < C(IV x @+ Vo), + [V xu-of, +|V-u,)  V{wo.pt€X

X = Hy(Q.div) N H(Q,curl) x Hy(Q,curl) x H'(Q) N L (Q)

A continuous least-squares principle (CLSP)

J({u,a),p};f) =||Vxw+Vp —f||§ +||Vxu- a)||§ +||V - u||§

’ minJ (u;f , g)

X

X = Hy(Q,div) N H(Q,curl) x Hy(Qcurl) x H'(Q) N L(Q)
Stability = LS Norm-equivalence

H({wo.p0) = fole +ole +pl;  Hoopte x

LS norm-equivalence = coercivity = unique least-squares solution.

v The LS solution coincides with the solution of the original VVP system.
v" Any conforming discretization of the CLSP yields well-posed LSFEM
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© Talk is over, let’s have a beer! & ) v
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On a second thought...maybe not

A straightforward conforming discrete least-squares principle (DLSP)

J({uh,a)h,ph};f) =||Vxw, +Vp, —f||§ +[|V xu, —a)h||§ + ||Vuh||(2)

X, C Hy(Q.div) N H(Q curl) x Hy(Q,curl) x H'(Q) N L (KQ)

The trouble with this DLSP

u, € H(Q,curl) = Tangential continuity
= C?continuity = u, EH'(Q)NH(Q,div)
u, € H(Q.div) = Normal continuity

Why is this bad?
Costabel (1991) shows that unless Q has smooth boundary or is a
convex polyhedron, H'/7 H,(div) may have
infinite co-dimension in H,(div)NH(curl)

= a C? (nodal) finite element space may lose approximability
property in Hy(div)NH(curl), i.e., solution will not converge.

= Mixed methods can solve this, but we have another approach... @
Awad):
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e
Back to the drawing board

What to do about the velocity: Give up on u being curl-conforming

2
Jh({uh,a)h,ph};f) =|Vxw, +Vp, —f||§ + — a)hHO +[|V- uh||§
X, C Hy(Q.div) N (S]] x Hy(@.curl) x H'(Q) N L;(Q)

We gain some and loose some:

« div-conforming velocity: natural for the normal velocity boundary condition
» div-conforming velocity : not in the domain of curl - need discrete approximation!
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Back to the drawing board
What to do about the velocity: Give up on u being curl-conforming
J,({w,.0,.p, }1:f) =V x @, + Vp, —f||§ + — a)hH(z) +[|V- uh||§
X, C Hy(Q.div) N (S]] x Hy(@.curl) x H'(Q) N L;(Q)

We gain some and loose some:

« div-conforming velocity: natural for the normal velocity boundary condition
» div-conforming velocity : not in the domain of curl - need discrete approximation!

The LSFEM is already “semi-conforming” so why stop here?

Jh({uh,a)h,ph};f) = HV X, sz + ‘
X, C Hy(Q,div) x Hy(Q,curl) @j@;@ 1(Q)

2
Vixuw, — o[ +[Vou;

We gain some and loose some:

* discontinuous pressure: allows us to define “strongly compatible” method
« discontinuous pressure: not in the domain of grad - need discrete approximation!
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Construction of semi-conforming LSFEM

Ingredient 1: a finite element De Rham complex

\% Vx V-
H}(Q)— H,(Q,curl) — H,(Q,div)— L; (Q) o, I, I, I,
Mg | e I,y Ml Bounded projection operators
G (Q)—> c'Q) i D/(Q) > ) with Commuting Diagram Property

Ingredient 2: discrete curl and grad operators

V,x Di(Q)—=Ci(Q) u,=V,xw, < (u,v,) =(w,.Vxv,) Vv, €CiQ)

k

V., S$(Q)—=DyQ) uw,=V,p, < (u,v,), =-(p,.V'v,), Vv,EDQ)

Valuable property (Discrete Friedrichs Inequality)

Jw, .. < C(HVZ xu,| +[V- uhHo) Vu, €D} (effect of compatibility)

. 2
where [, =l l+[Vi xu, [+ IV u,l  vu,ED!
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Is the semi-conforming LSFEM any good?
Theorem (discrete stability) V{u,0,.p,} € X, =Dg(Q)x C;(RQ) x S, (X)
e + @l +2ill- = C(V x @, + Vip, |, + V5 xw, -, + V- w, )

Proof. Using compatible FE allows to repeat the proof from the continuous case!

Discrete Stability = Discrete Norm-equivalence

Jh({uh,a)h,ph};O) < HuhHZC + Ha)th + HPHS; V{uh,a)h,ph} € X,

LS norm-equivalence = coercivity = unique least-squares solution.
v The LS solution coincides with the solution of a mimetic VVP system:

(Vxw,+V,p=n,f in Q < “exact” momentum equation
vV, w,=0 in Q < “redundant” equation implied by vorticity def..
< V,xu, —w, =0 in Q < vorticity is discrete curl of velocity
V-u, =0 in Q < divergence free velocity!

Laboratories

This is why we call the method strongly mimetic! @ Naora



What about the accuracy?

Theorem

The least-squares solution {u,,w,,p,} € X, =Dg(Q) x Cy(RQ) x S, (X)
satisfies the error estimates

Vx(w-w,)|, = CZQEQHV x(w=E,),

Vxu-V, thHo <2V xu-m.Vxul +|o-w,|,

Vp-V,p|| =2IVp -7, Vpl|, + |V x (@ -w,)],

’—> If c’g is Nedelec space of the 2nd kind and Q is convex polyhedron.

O£=§—§ s>2

Cl O x@=0), + inf {Jo-5,,+ T @=L} "7

”w _w, ||0 <) depends on Q

C+ WV x(@-w,), + inf {Jo L, +[Vx@-E)],}
L» If C, is Nedelec space of the 1st kind

Ju-w,fly = o= 7,0, + [Tu -] +w-o,], Sani
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Rates of convergence

Order of the velocity depends on the kind of the vorticity space:

Vx(@-w,), =Ch'|Vxa|

If C, is Nedelec space of the 1st kind w-w,, = Ch’(||a) [V xw )
X, =D;"'xC: xS> or D xC; xS, Vxu-V, ><uhH0 sCh’( Vxu| +|w| +[|Vxw r)
u-u, =< Chr(|u o] +|Vxw r)

Pressure is independent of the
kind of the vorticity space:

Vp

r+||V><a)

)

—»HVp -V.p, HO < Ch’(

V x (a)—ooh)”0 <Ch'

Vo,

w

+h %[V x o

)

+ ||

If C! is Nedelec space of the 2nd kind @ -, = Ch™!(

r+l

V xu

+h ™|V xw

)

- = = * r+l
X, =D'xCi xS or D xCix8  [Vxu-V,xu[ scr(|Vxu]  + o,

+h'7%||V x a)||r)
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u-u, = Chr(

u r+h||a)
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Connection with a mixed method

Theorem
Consider the following mixed vorticity-velocity potential-pressure formulation:

Seek {&,,0,.7,} € X,y = CL(Q)NN(V x)" x Ch(Q) x S!(Q) such that
(Vxw, Vxd,)=(EVxd,) Ya,ECHR)
(Vx&h,ngh) (a)h,éh) VE, € Cy(Q)

(Vopu Vb ) =(EV,5,) VB, € S:(Q)

N\

If Do (<) is a div-compatible FE space that contains the range of curl acting on Cg(L), then
{u,,0,,p,} ={V x&,.0,.p,} € X, =Dy (Q) x C;(RQ) x S; (X)

is solution of the strongly mimetic LSFEM.

 Similar (up to pressure space) to a mixed method by Girault (Math. Comp.51 1988)
» Requires basis for the orthogonal complement of the nullspace N(V ><)L
+ Characterization of N(V x)" not as straightforward as that for N(V x) = VG (Q)

 Strongly mimetic LSFEM is easier to implement R () Sande
| Nationa
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What about solving the equations?
The pressure equation can be solved independently
(VopVibi) = (EV,B,) VP, €S(Q)
Vorticity and velocity can be computed from the following weak problems
(Vxw,.Vx§,)+(V, 0,V,§)=(EVxE,) VE ECHQ)
(V) x w0,V xv, )+ (Vou, Vv, ) =(0,.V, xv,) Vv, ED}(Q)

which are the Euler-Lagrange equations of a

curl-conforming and div-conforming
* 2 %
J(w,:£)=||Vxw, —f||§ + ‘Vh -a)hHO,eo J(u,;0,)= HVh xu, —a)th +[|V -
X, = Cg(Q) X, = DS(Q)

LSFEMS for two complementary div-curl systems. @
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We now have efficient AMG for these problems!

For clarity we explain the lowest-order case for the vorticity system

C,(R) — the lowest-order Nedelec space of the 1st kind

G,(Q)— the lowest-order nodal C% space

Discrete least-squares problem

(Vx0,,VxE,), +(V, 0,.V,°&,) =(EVxE,), VY& EC

y '

K + MJDM/DM. = f curl-curl + grad-div matrices

M.  curl-conforming mass matrix Note: Can use any O(h)

where M, grad-conforming mass matrix approximation for M .

We will use mass lumping.

D vertex-to-edge incidence matrix

VE

AMG solver for this system is available as a subsolver of the eddy current AMG in
Bochev, Hu, Tuminaro and Siefert, SISC 2008. @ Sandia
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Conclusions

Even in least-squares:

Compatibility pays and there’s no free lunch

© Compatible FE allow to formulate LSFEMs for the Stokes equations with

— Divergence-free velocity

— Discrete momentum equation

— Proper relationships between the variables (“redundant” equation)
— Robust even for rough solutions

@ Forming and solving the resulting linear systems requires advanced tools:

— Formally linear systems include inverse mass matrix
— The div-curl systems require sophisticated AMG solver
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Conclusions

Even in least-squares:

Compatibility pays and there’s no free lunch

© Compatible FE allow to formulate LSFEMs for the Stokes equations with

— Divergence-free velocity

— Discrete momentum equation

— Proper relationships between the variables (“redundant” equation)
— Robust even for rough solutions

@ Forming and solving the resulting linear systems requires advanced tools:

— Formally linear systems include inverse mass matrix
— The div-curl systems require sophisticated AMG solver

But we can have a beer now!
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